

Consolidating High-Integrity, & High-Performance Functions on a Manycore Processor

Benoît Dupont de Dinechin, CTO

Embedded Multicore Summit November 2020

www.kalrayinc.com

Kalray in a Nutshell

Kalray offers a new type of processor and solutions targeting the booming market of intelligent / edge systems. A Global Presence

- France (Grenoble, Sophia-Antipolis)
- USA (Los Altos, CA)
- Japan (Yokohama)
- Canada (Partner)
- China (Partner)
- South Korea (Partner)

Leader in Manycore Technology

~**€85**m

R&D investment

e 3rd generation of MPPA[®] processor

30 Patent families

Industrial investors

SAFRAN MBDA

EURONEXT

- Public Company (ALKAL)
- Support from European Govts
- Working with 500 fortune companies

Outline

- 1. MPPA[®]3 Manycore Processor
- 2. Standard Programming Environments
- 3. Model-Based Development Environments
- 4. Consolidation of Application Functions

Intelligent Systems, a Disruptive Challenge Requiring a New Generation of Processors

& beyond

Multicore and Manycore Processors

Homogeneous Multicore Processor

Core Core Core Core Core Layer LCache LCache <td< th=""><th></th><th>APP 1 APP 2</th><th>APP 3 APP 4</th><th>APP 5 APP 6</th><th>APP 7 APP 8</th><th>APP 9 APP 10</th><th>APP 11</th><th>APP 12</th><th>ADD 13</th><th>APP 13</th><th>APP 14</th><th></th><th>Applicatio Software Layer</th></td<>		APP 1 APP 2	APP 3 APP 4	APP 5 APP 6	APP 7 APP 8	APP 9 APP 10	APP 11	APP 12	ADD 13	APP 13	APP 14		Applicatio Software Layer
Licade Licade Licade Licade Licade Licade Li2 Cache Li2 Li2 Li2 Li Li2 Li2 Li2 Li2 Li2 Li2		Host Operating System								Infrastructu Layer			
	Licade Licade 6 date Licade Licade <thlicade< th=""> <thlicade< th=""> <thlicade< td="" th<=""><td>Physical Hardware Layer</td></thlicade<></thlicade<></thlicade<>						Physical Hardware Layer						

Multiple CPU cores sharing a cache-coherent memory hierarchy

- Scalability by replicating CPU cores
- Standard programming models

Energy efficiency issues

• Global cache coherence scaling

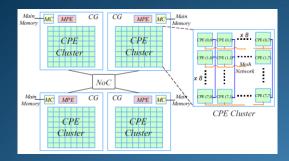
Time-predictability issues

• No scratch-pad or local memories

GPGPU Manycore Processor

Multiple Streaming Multiprocessors

• Restricted programming models


Performance issues of 'thread divergence'

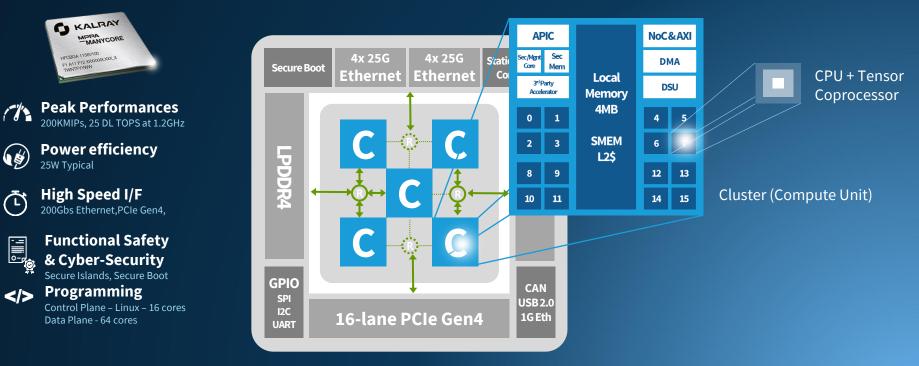
- Branch divergence slow down the execution
- Memory divergence: non-coalesced accesses

Time-predictability issues

- Dynamic allocation of thread blocks
- Dynamic scheduling of warps

CPU-Based Manycore Processor

Multiple "Compute Units" connected by a network-on-chip (NoC)


- Scalability by replicating Compute Units
- Standard multicore programming inside a Compute Unit

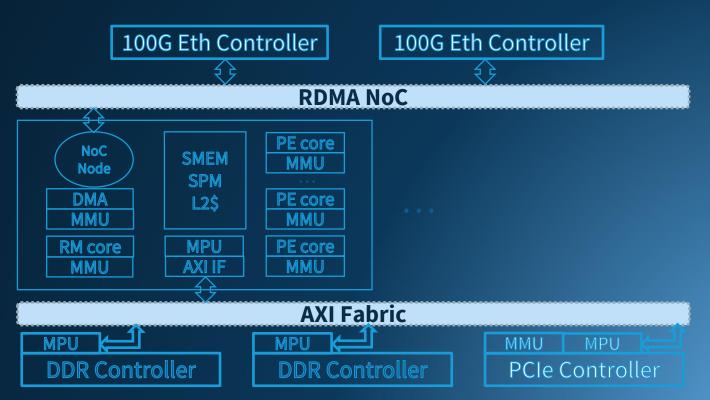
Compute Unit

- Group of cores + DMA
- Scratch-pad memory (SPM)
- Local cache coherency

MPPA[®]3 Manycore Processor 5 Compute Units, 80 Accelerated VLIW Cores

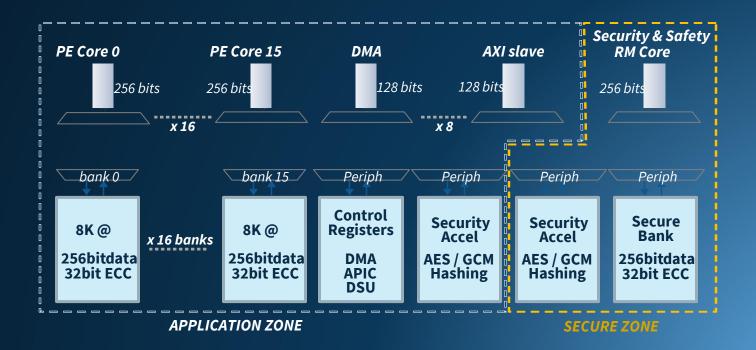
Network-on-Chip for Global Interconnects

NoC as generalization of busses


- Connectionless
- Address-based transactions
- Flit-level flow control
- Implicit routing
- Inside a coherence domain
- Reliable communication
- Coherency protocol messages
- Coordinate with DDR memory controller frontend (Ex. Arteris FlexMem Memory Scheduler)

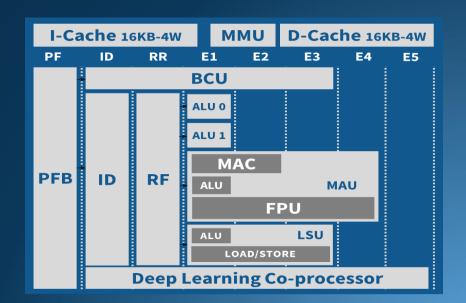
NoC as integrated macro-network

- Connection-oriented
- Stream-based transactions
- [End-to-end flow control]
- Explicit routing
- Across address spaces (RDMA)
- [Packet loss or packet reordering]
- Traffic shaping for QoS (application of DNC)
- Terminate macro-network (Ethernet, InfiniBand)
- Support of multicasting



MPPA®3 Global Interconnects

MPPA®3 Cluster Interconnect


MPPA®3 64-Bit VLIW Core

Vector-scalar ISA

- 64x 64-bit general-purpose registers
- Operands can be single registers, register pairs (128bit) or register quadruples (256-bit)
- Immediate operands up to 64-bit, including F.P.
- 128-bit SIMD instructions by dual-issuing 64-bit on the two ALUS or by using the FPU datapath

FPU capabilities

- 64-bit x 64-bit + 128-bit → 128-bit
- 128-bit op 128-bit → 128-bit
- FP16x4 SIMD 16 x 16 + 32 → 32
- FP32x2 FMA, FP32x4 FADD, FP32 FMUL Complex
- FP32 Matrix Multiply 2x2 Accumulate

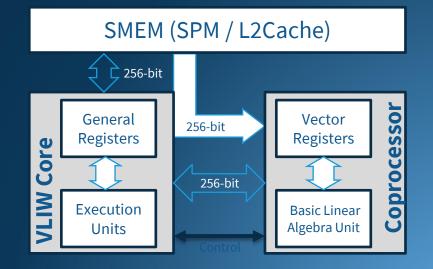
VLIW CORE PIPELINE

MPPA[®]3 Tensor Coprocessor

Extend VLIW core ISA with extra issue lanes

- Separate 48x 256-bit wide vector register file
- Matrix-oriented arithmetic operations (CNN, CV ...)

Full integration into core instruction pipeline

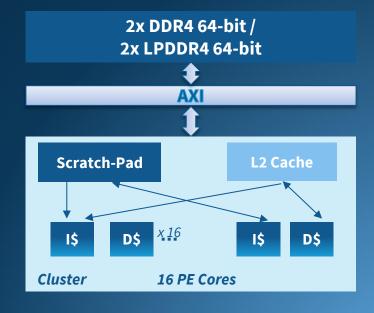

- Move instructions supporting matrix-transpose
- Register dependency / cancel management

Leverage MPPA the memory hierarchy

- SMEM directly accessible from coprocessor
- Memory load stream aligment operations

Arithmetic performances (MPPA3-v1)

- 128x INT8→INT32 MAC/cycle
- 64x INT16→INT64 MAC/cycle
- 16x FP16→FP32 FMA/cycle


MPPA®3 Memory Hierarchy

VLIW Core L1 Caches

- 16KB / 4-way LRU instruction cache per core
- 16KB / 4-way LRU data cache per core
- 64B cache line size
- Write-through, write no-allocate (write around)
- Coherency configurable across all L1 data caches

Cluster L2 Cache & Scratch-Pad Memory

- Scratch-pad memory from 2MB to 4MB
 - 16 independent banks, full crossbar
 - Interleaved or banked address mapping
- L2 cache from 0MB to 2MB
 - 16-way Set Associative
 - 256B cache line size
 - Write-back, write allocate

L1 cache	L2 cache			
coherency	coherency			
enable	enable			
/disable	/disable			

Outline

- 1. MPPA[®]3 Manycore Processor
- 2. Standard Programming Environments
- 3. Model-Based Development Environments
- 4. Consolidation of Application Functions

MPPA[®] Accelerator and Stand-Alone Modes

ACCELERATOR MODE

Host running Linux

STAND-ALONE MODE Cluster 0 used as Host

MPPA[®] High-Performance Programming Models

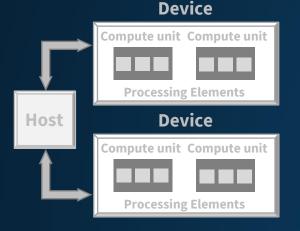
OPENCL 1.2 Programming

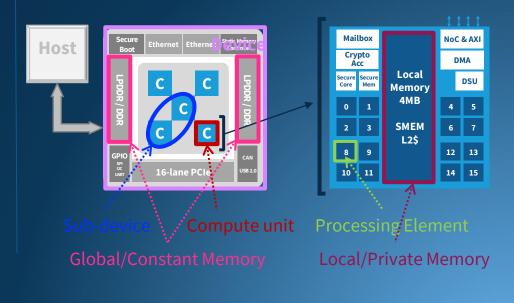
C/C++ POSIX Threads Programming

Standard accelerator programming model for offloading on MPPA[®]

- POSIX host CPU accelerated by MPPA device (OpenAMP interface)
- OpenCL 1.2 compatibility with POCL environment and LLVM for OpenCL-C
- OpenCL offloading modes:
 - Linearized Work Items on a PE (LWI)
 - Single Program Multiple Data (SPMD)
 - Native code called from kernels

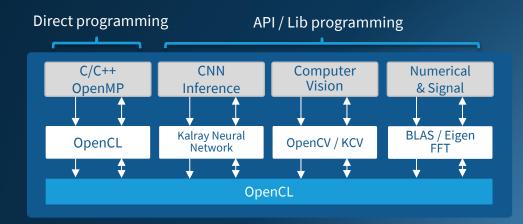
Standard multicore programming model with exposed MPPA® communications


- MPPA Linux and ClusterOS
- Standard C/C++ programming
 - GCC, GDB, Eclipse system trace
- POSIX threads interface
- GCC and LLVM OpenMP support
- RDMA using the MPPA Asynchronous Communication library (mppa_async)


MPPA[®] OpenCL Compute Platform Mapping

OpenCL Compute Platform Model

Topology: Host CPU connected to one or several Device(s) **Host**: CPU which runs the application under a rich OS (Linux) **Device**: Compute Unit(s) sharing a Global Memory **Hierarchy**: Multi-Device => Device => Sub-Device => Compute Unit(s) => Processing Elements


'SPMD' Mapping to MPPA[®] Architecture

Kalray Acceleration Framework (KAF[™])

A integrated way to program manycore architecture based on OpenCL Sub-Devices and Native Functions

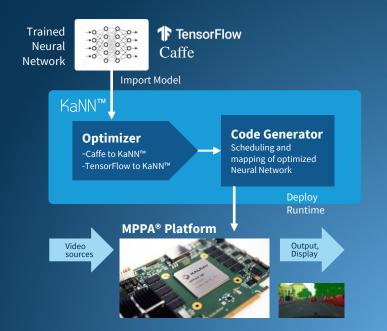
MPPA[®] OpenCL Native Function Extension

- Call standard C/C++/OpenMP/POSIX (ClusterOS) code from OpenCL kernels
- Generalization of TI 'OpenMP Dispatch With OpenCL' for KeyStone-II platforms
- Used by the Kalray KaNN deep learning inference compiler
- Used by BLAS and multi-cluster libraries

```
void
my_vector_add(int *a, int *b, int *c, int n)
{
    #pragma omp parallel for
    for (int i = 0; i < n; ++i)
    {
        c[i] = a[i] + b[i];
    }
</pre>
```

```
__attribute__((mppa_native))
void my_vector_add(__global int *a, __global int *b, __global int *c, int n);
__kernel void vector_add(__global int *a, __global int *b, __global int *c, int n) {
    my_vector_add(a, b, c, n);
}
```


KaNN[™], Kalray Neural Network Inference Compiler

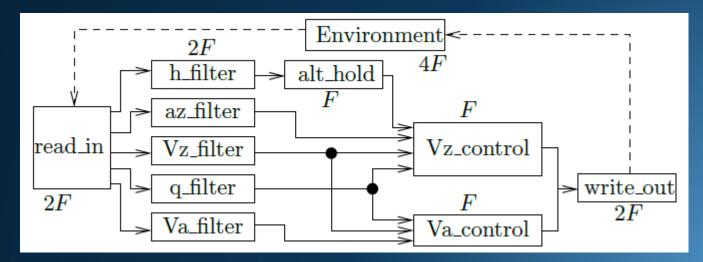

From standard Machine Learning frameworks to code generation, setup and multiple CNN execution

Deep Learning Inference Code Generator and Runtime

- Optimization of neural networks for MPPA[®]
- Deployment of neural networks on MPPA[®]
- Execution on the specified number of clusters

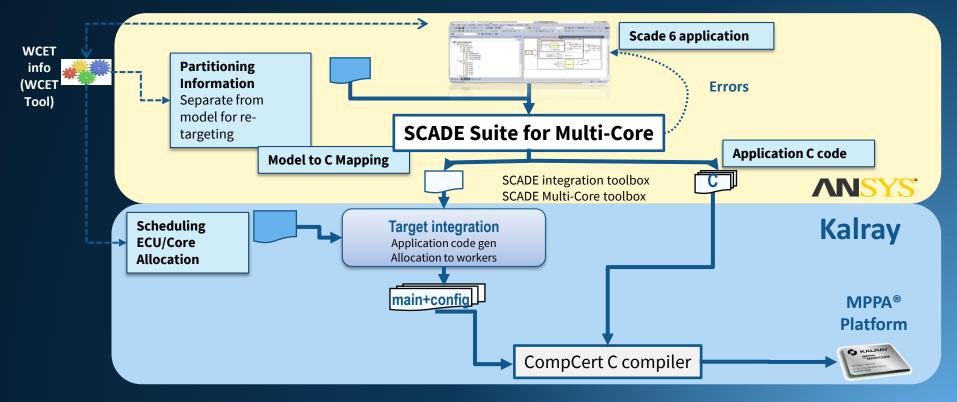
Support of:

- Major frameworks
- Major networks
- Custom networks
- FP16.32 & FP32 arithmetic
- INT8.32 integer quantization


Outline

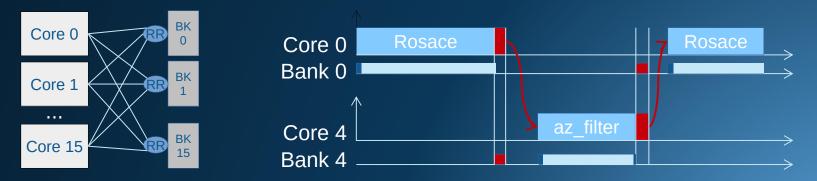
- 1. MPPA[®]3 Manycore Processor
- 2. Standard Programming Environments
- 3. Model-Based Development Environments
- 4. Consolidation of Application Functions

ROSACE Case Study for MBD on Multicore


 Simplified controller for the longitudinal motion of a medium-range civil aircraft in en-route phase: cruise and change of cruise level sub-phases

• Application has 3 harmonic periods: F, 2F, 4F

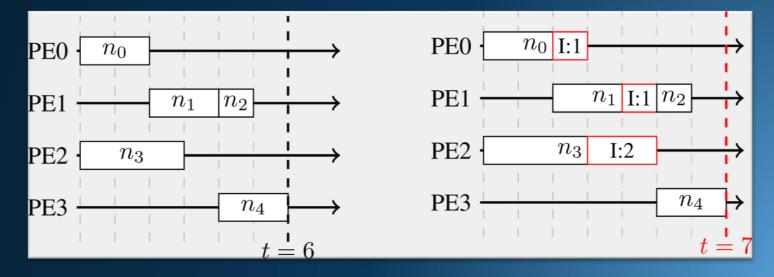
SCADE Suite Multi-Core Code Generation Flow



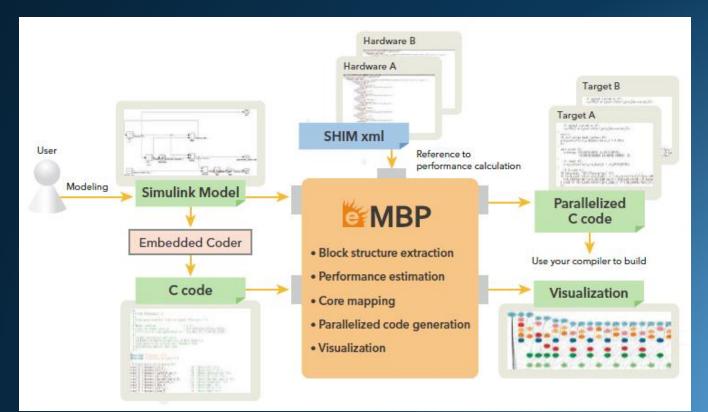
SCADE Suite MCG Code Generation

Exploit the MPPA cluster configuration for 'high-integrity' execution

Cluster local memory address mapping assigns one bank per core

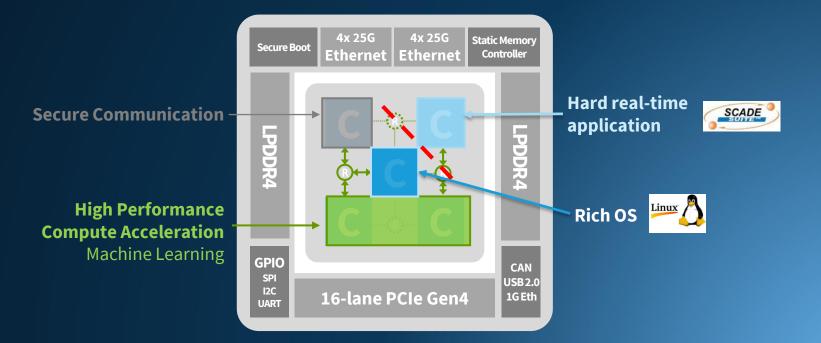


- Precisely compute the task WCETs (Worst-Case Execution Times)
 - Static analysis or measurement for the WCET of tasks in isolation
 - Refine the WCET with interferences [Rihani RTNS'16][Schuh DATE'20]
 - 2-phased Predictable Execution Model better than 3-phased [Schuh RTSS'20]


Time-Triggered Multicore Scheduling [Schuh DATE'20]

- Given a task mapping and release dates, schedule by forward time sweep
- Release a task when its dependencies are satisfied and after its release date
- Adjust interferences considering to the subset of curently executing tasks

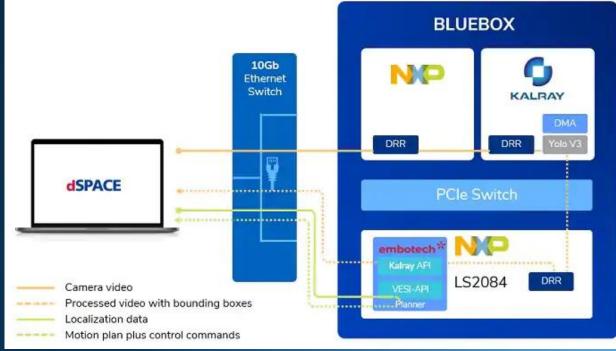
eSOL eMBP Multi-Core Code Generation Flow


Outline

- 1. MPPA[®]3 Manycore Processor
- 2. Standard Programming Environments
- 3. Model-Based Development Environments
- 4. Consolidation of Application Functions

Mapping Functions to Compute Units

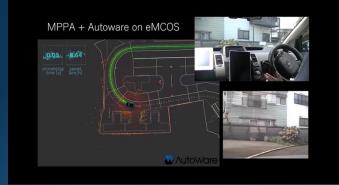
Running Multiple applications and OS Concurrently



C Cluster

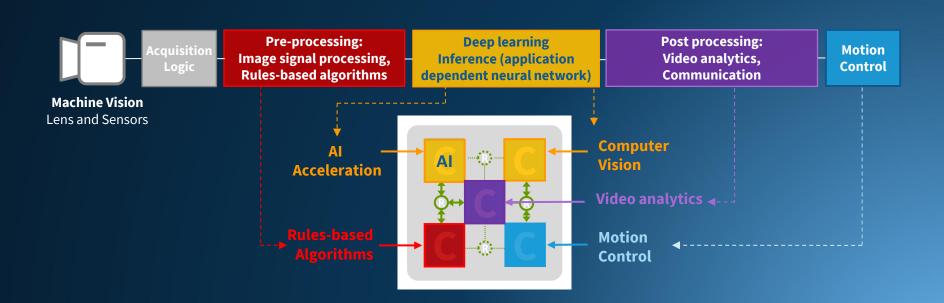
CES 2020 NXP Demonstration

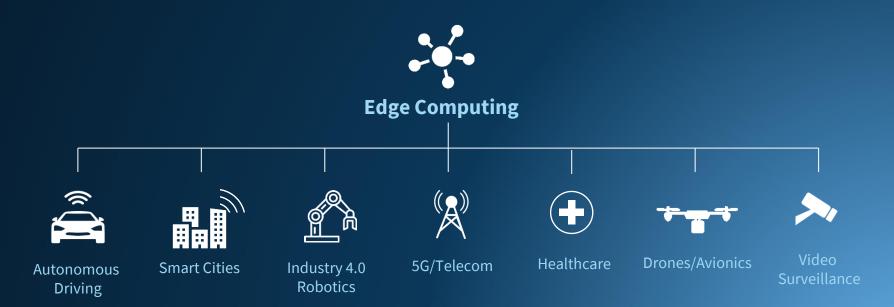
- NXP BlueBox 2nd generation Autonomous Driving Development platform with production ready automotive silicon
- Kalray Coolidge 3rd Generation MPPA Perception Accelerator and Al Software (Yolo v3 416x416 at 20FPS, NVIDIA Xavier is at 18FPS)
- Embotech Forces Pro and ProCruiser Real-time optimal control software and Highway planner solution
- dSPACE ASM Traffic Real time simulation environment with traffic, sensor simulation, full VD and BEV powertrain.


Autonomous Driving Use Case

• Functions

- Automotive (Autonomous Driving / ADAS)
- Object Tracking and Path Planning
- Implementation
 - Extensive use of eMCOS POSIX & ROS (1)
 - Autoware/ROS for control/vision
 - MPPA[®] used as multi-accelerator (vision and LiDAR)


Combination of RTOS-POSIX with Multi-Accelerator



MPPA[®] for Machine Vision Applications

MPPA FOR EDGE APPLICATIONS Compute-Intensive, Time-Critical, Safety & Security

KALRAY PRODUCT OFFER

	Evaluation & Development	Prototyping	Production
Use Case	Customer wants to benchmark, evaluate, learn/train & Develop	Customer wants to test in its environment including vehicle prototypes: customize, adapt, fine tune, qualify	Go to production Fully qualified HW and SW
Hardware	MPPA®-DEV Kalray development Platform	Kalray PCI CardReference Design	Chip Acceleration Module (with 3 rd party)
Software & Tools	Kalray Software Tools and Libraries Linux AccessCore®	Customer Software Third Party Software Kalray Libraries AccessCore®	Fully qualified Third Party Software Kalray Libraries AccessCore®

Thank You

KALRAY S.A

Corporate Headquarters 180, avenue de l'Europe 38 330 Montbonnot, France Phone: +33 (0)4 76 18 90 71 contact@kalrayinc.com

America Regional Headquarters 4962 El Camino Real Los Altos, CA - USA Phone: +1 (650) 469 3729 contact@kalrayinc.com

ALRAY JAPAN - KK

Represented by MACNICA Inc. Strategic Innovation Group Macnica Building, No.1, 1-6-3 Shin-Yokohama Kouhoku-ku, Yokohama 222-8561, Japan Phone: +81-45-470-9870

KALRAY S.A

Sophia-Antipolis 1047 allée Pierre Ziller Business Pôle – Bâtiment B, Entrée A 06560 Sophia-Antipolis, France Phone: + 33(0) 4 76 18 09 18

www.kalrayinc.com