
Automotive multi-core trends in Germany

Embedded Technology 2016, Japan
Multi-/many-core summit

Peter Gliwa
CEO GLIWA GmbH

Version 2

2

Contents

• Introduction

• Multi-core in automotive projects

• Timing requirements in OEM's requirements specifications

• State-of-the-art multi-core timing analysis

• Upcoming Standard: ARTI (AUTOSAR Real-Time Interface)

• Summary

IntroductionIntroduction

444

Gliwa GmbH – company introduction

• Timing analysis and embedded software expertise since 2003
– embedded timing secured in hundreds of mass-production projects

– located near Munich in Weilheim i.OB., Germany

– 26+ employees mostly engineers

• Stack Analysis combining static and dynamic methods

• Distributor for Japan: w
w

w
.

g
l

i
w

a
.

c
o

m

Latest figures/news

• is the de facto standard for tracing in the
German automotive market

• is required by several OEMs

• Constant growth over the past
years (mostly >20%pa)

• GLIWA Ltd. in York (UK)
founded in 2015

• GLIWA engineering founded March, 2016

5

Yearly turnover

6

Timing: a new species?

System Tests

Module Tests

Integration

Implementation

Design

Timing requirements/
constraints, Timing layout

Mapping, OS config

Timing debugging/
optimization

Profiling (CETs), timing
supervision

Profiling (RTs, CPU-load),
timing supervision

Apply your develeopment
processes and

methodologies also to the
timing of your software!

Multi-core in
automovie
projects

Multi-core in
automovie
projects

8

AUTOSAR scheduling: definition of terms, example

• A software component (SWC) “idle
speed control” of an engine
management ECU is coded in three
runnables:

– IdleSpeedInit
– IdleSpeed10ms
– IdleSpeed50ms

• As part of the RTOS configuration,
these get mapped to three different
tasks which they share with many
other runnables from other SWCs.

• For multi-core processors, tasks get
also mapped to a certain core.

R
un

na
bl

es
SW

C
s

S
W

C
 A

S
W

C
 i
sc

S
W

C
 B

S
W

C
 C

S
W

C
 D

S
W

C
 E

emcu_1ms_task

emcu_init_task

emcu_50ms_task

emcu_10ms_taskTa
sk

s

R
un

na
bl

e
to

 ta
sk

 m
ap

pi
ng

Core 0 Core 1 Core 2

Ta
sk

 to

co
re

m

ap
pi

ng

9

AUTOSAR scheduling: task states

10

AUTOSAR scheduling: run-time situation

11

Multi-core: different kinds of parallelism

• Application parallelism
– Each application runs on

one core only.
– Think of independent

threads under a desktop OS

• Function parallelism
– Executing portions of

functional closely related
code in parallel

– Think of a sort algorithm

• Instruction parallelism
– Processor cores have

pipelines which process
instructions in parallel.

Application parallelism

Function parallelism

Instruction parallelism

Granularity (Software-) level

high

low

12

Multi-core: different kinds of parallelism

• Application parallelism
– Each application runs on

one core only.
– Application ≠ thread

• Function parallelism
– Executing portions of

functional related code in
parallel

• Instruction parallelism
– Processor cores have

pipelines which process
instruction in parallel.

• Easy: take two single-core
ECUs and assign each SW to
the core of a multi-core ECU

• Extremely difficult:
automotive SW is typically not
designed to be parallelized

• Mostly easy: follow some
design rules to exploit your
pipeline

13

The Multi-core Poster – Multi-core on one sheet of paper

Ask for your own
free copy at the
GAIO booth:

D-34

Timing requirements
today and tomorrow

Timing requirements
today and tomorrow

15

Requirements specification documents

• A good ECU’s requirements specification
is the foundation for sound and safe timing.

• Requirements specifications should
addresses two topics related to timing:

– A list of timing requirements (as far as they
are known)

– Requirements regarding the environment,
methodologies and tools

timing
requirements

methodologies &
tools requirements

16

Timing requirements

• Known timing requirements, e.g.
– start-up times (presence on bus)
– sub event chains (as part of end-to-end constraint)
– execution orders

• Budgets
– overall CPU-load
– CETs (also for containers holding OEM code!)

• ISO 26262
– requires “freedom of interference”
– in other words: correct and secured timing

timing
requirements

17

Methodology requirements

• Define a process/infrastructure for maintaining timing
requirements  handle upcoming timing requirements

• Select appropriate timing analysis techniques, e.g.
– scheduling simulation for the early project phase and
– traing/measurement for the late phase

• Specify minimum requirements regarding timing requirements verification
– Specify when/how often timing requirements get verified
– Specify the environment (in-car, lab, simulation, static analysis, …)
– Specify the conditions (scenarios, test coverage, …)

• Specify how timing verifications and timing properties are documented.

methodologies &
tools requirements

18

Tool requirements

• Typically, the OEM does not require
the supplier to use a certain tool.
 However, in some cases this might
make sense.

• Specify who has the tools available.
 In-house solutions do not help
much in a shared SW development.

• Specify which exchange formats and
export formats have to be supported.

Example 1: OEM wanted to
measure, supplier provided in-
house tool. Interfaces were often
subject to changes, no manuals,
no dedicated support
 usage at OEM very difficult

Example 2: OEM forgot to specify
they want to able to measure. So
they did not get access to the
existing supplier internal tools.

methodologies &
tools requirements

19

Templates for requirements specifications

• In 2009, BMW started collecting generic text
blocks for requirements specifications

– Ensure that the timing topic is addressed properly
in future projects.

– Reuse approaches which were successful in the
past.

– Efficiency: avoid that authors of requirements
specifications have to ‘research’ timing related
aspects again and again.

• The result: text templates for requirements
specifications.

– Timing requirements are mostly project-specific
– Thus, templates focus on methodologies and

tools.

timing
requirements

methodologies &
tools requirements

20

Templates for requirements specifications

• Excel table with text templates
– including recommendation

according to ASIL level

• Word document with templates

• Some big OEMs follow this
approach already. More and more
follow…

21

State-of-the-art
multi-core
timing analysis

State-of-the-art
multi-core
timing analysis

22

T1-HOST-SW

PC based SW tool for
visualization, analysis
and configuration

T1-TARGET-SW

Embedded software
component which traces,
analyses and supervises
at run-time

Instrumentation-based tracing: T1

23

Instrumentation based tracing – “online” and “offline”

• The trace data can be analyzed
– Off-target (including visualization)
– On-target (continuous “on-the-fly

analysis”)

• On-target analysis allows
– not only measurements but

supervision: compare measured
parameters with pre-defined limits

• Continuously
• In-car without PC connected
• Callbacks allow e.g. error buffer

entries
– storing results in non-volatile

memory  collect results
from billions of executions

On target
supervision

Visit us at the
GAIO booth:

D-34

24

Latest news: synced traces fro 6 cores
Live demo of the TC397
at the GAIO booth:

D-34

Cross-core data
flow analysis

Synchronized traces

from 6 cores!

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Infineon press-release
3 weeks ago:

AURIX 2nd generation

25

ARTI
AUTOSAR Real-Time Interface
ARTI
AUTOSAR Real-Time Interface

26

AUTOSAR and timing

• Timing Extensions
”TIMEX”; since AUTOSAR 4.0
 Allow specification of timing requirements

• Timing Analysis
First released with 4.1.3
 Use-cases based guide to timing

• AUTOSAR OS
Contains timing protection mechanisms
 As of 4.2.2: Execution-, Locking- and

Inter-Arrival Time Protection

• ARTI (AUTOSAR Run-Time Interface)
not a standard yet (probably in 2017)
 more details later

Ti
m

in
g

An
al

ys
is

 d
oc

um
en

t

27

ARTI goals

• Generally, ARTI shall support and simplify
the following:

– Debugging
– Tracing
– Timing Measurement / Profiling

• ARTI shall support
– Multi-core
– Runnables
– Instrumentation-based tracing and

measurement solutions
– The actual AUTOSAR-OS implementation
– TIMEX
– debugging and tracing beyond ECU level,

e.g. end-to-end timing taking several ECUs
and buses into account

– AP (adaptive platform)

28

ARTI: who is behind it?

AUTOSAR/ OS vendors Timing Tool vendors

Debug/Trace Tool vendors Users, AUTOSAR experts

29

ARTI: current status/schedule

• Concept owner: Peter Gliwa <peter.gliwa@gliwa.com>
• MS0 passed 2016-09-07
• Further planning:

– MS1 (WP Assessments completed): 2016-11-25
– MS2 (review readiness): 2017-02-15
– MS3a (Call for review): 2017-09-15
– MS3b (Validation completed): 2017-11-01

today

30

ConclusionConclusion

31

Conclusion

• More detailed timing requirements are necessary for
building safe and reliable systems.

• Well engineered requirements regarding
methodologies & tools are necessary for efficient SW
development.

• Tracing gets your timing on the safe side.

• Developing multi-core ECU SW without timing tools is
far too costly and error prone.

Thank you

pe
te

r.g
liw

a@
gl

iw
a.

co
m

